Analysis of the Size Distribution of Single-Walled Carbon Nanotubes Using Optical Absorption Spectroscopy

Ying Tian,† Hua Jiang,† Jan v. Pfaler,† Zhen Zhu,† Albert G. Nasibulin,*,† Timur Nikitin,§ Brad Aitchison,*, Leonid Khriachtchev,§ David P. Brown,⊥ and Esko I. Kauppinen*,†,§

†Nanomaterials Group, Department of Applied Physics and Center for New Materials, Aalto University, Puumiehenkuja 2, 00076, Finland, ‡Department of Mathematics and Systems analysis, Aalto University, Espoo, Finland, §Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland, †Canatu Ltd, 02150, Espoo, Finland, and #VTT Biotechnology, Espoo, Finland

ABSTRACT The diameter of single-walled carbon nanotubes (SWNTs) is an important characteristic to determine their electronic properties and direct further applications in electronics and photonics. A demand currently exists for an accurate and rapid method of evaluating the mean diameter and diameter distribution of bulk SWNTs. Here, we provide an effective means for quantifying the diameter distribution of SWNTs using optical absorption spectroscopy without a strict prior assumption on the form of the diameter distribution. Verification of this assignment protocol is based upon statistical analysis of hundreds of high-resolution transmission electron microscopy (HRTEM) images as well as comparison with Raman measurements on the same SWNT samples. A good agreement among different techniques indicates that this approach enables accurate and rapid assessment of diameter distribution and can be extended to bulk SWNT samples with various diameter distributions.

SECTION Nanoparticles and Nanostructures

Single-walled carbon nanotubes have attracted intense interest due to their unique electronic, optical, thermal, and mechanical properties useful for various applications. The diameter and chiral angle of a SWNT define the geometric structure and electronic properties, which are central for their applications to electronics and photonics. Although many synthesis techniques of SWNTs have been successfully developed (arc discharge, laser desorption, and chemical vapor deposition (CVD)), in all known fabrication methods, the SWNTs are produced simultaneously in various diameters and chiral angles. Therefore, it is critical to develop an efficient method which provides reliable characterization of the produced SWNTs in order to properly understand their basic electronic and optical behaviors and for subsequent implementation in nanotube-based applications.

TEM and electron diffraction (ED) of individual SWNTs have been applied to provide direct analysis of both diameter and chiral angles without ambiguity. HRTEM allows us to observe directly the structure of SWNTs without relying on physical properties or modeling. This has proven to be the only reliable technique to obtain populations of SWNT characteristics. However, a problem common to the electron microscopy technique is its low efficiency in obtaining a diameter distribution on bulk SWNTs.

In contrast to the direct analysis methods, Raman spectroscopy as a bulk sensitive method has been widely used to characterize the diameter of SWNTs based on the reverse relationship between the diameter and the frequency of radial breathing modes (RBMs). The Raman response for this mode strongly depends upon the laser excitation energy; thus, several laser lines are required to estimate the mean diameter and diameter distribution of a bulk SWNT sample. Complementary to Raman spectroscopy, optical absorption spectroscopy has been proven to be a powerful tool to evaluate these properties of a bulk SWNT sample since all types of nanotubes are active in the UV–vis–NIR region. However, the evaluation of mean diameter and diameter distributions very much depend on the model used to analyze the data. In addition, the diameter distribution of a bulk SWNT sample is typically assumed a priori to be Gaussian. However, SWNTs produced via the CVD and HiPCO processes often cannot be accurately approximated by a simple diameter distribution. Consequently, the absorption spectra do not necessarily show the three well-resolved main absorption peaks that correspond to the first and second transition energies of semiconducting nanotubes (E_g, E_2g) and the first transition energy of metallic nanotubes (E_1g). In such a case, it is impractical to follow a canonical approach by which one first identifies the absorption peaks and then assigns each to a specific transition energy. In the present work, we determine the mean diameters and diameter distributions of bulk SWNTs by means of...
Raman and optical absorption spectroscopy in combination with the direct observation technique by electron microscopy. We introduce a universal method for more effective assignment of diameter distributions from the optical absorption spectrum without making a strict assumption regarding the form of the diameter distribution. This method can be used as a versatile tool to analyze absorption spectra regardless of the form or overlap of the absorption bands. The resulting diameter distributions were further compared with Raman measurements and validated based on statistical analysis of hundreds of HRTEM images performed on the same SWNT samples.

The SWNT samples were synthesized by a scale-up aerosol reactor using ferrocene as the catalyst precursor and CO as the carbon source.16,17 CO\textsubscript{2} plays an important role in the growth process.18 SWNTs with different mean diameters and diameter distributions were synthesized at 920 °C with different concentrations of added CO\textsubscript{2} (denoted C\textsubscript{1}, C\textsubscript{2}, C\textsubscript{3}, C\textsubscript{4}, and C\textsubscript{5} for CO\textsubscript{2} concentrations of 0, 0.4, 0.7, 1.0, and 1.2 %, respectively). Figure 1 shows the Raman spectra of the as-prepared samples using excitation energies of 1.58, 2.33, and 2.54 eV. As expected, the Raman spectra of the samples exhibited strong G bands (Figure 1a) and RBM features (Figure 1b, c, and d), with the exception of sample S5, which had very low-intensity G and RBM bands, indicating that there is little carbon nanotube material and substantial amounts of impurities. Similar results were observed by TEM measurement (Figure S1, Supporting Information).

The RBMs correspond to the coherent vibration of the carbon atoms in the radial direction and are used to probe the nanotube diameter \(d_{\text{r}}\) by the well-established relationship of \(d_{\text{r}} = A\omega_{\text{RBM}} + B\), where \(A = 217.8\) and \(B = 15.7\) are determined experimentally.19,20 When the 2.33 eV laser is applied (Figure 1b), the RBMs are similarly positioned in these samples. However, the relative intensity at a higher frequency range of 200–270 cm\(^{-1}\) steadily decreases as the CO\textsubscript{2} concentration increases. This indicates that the relative abundance of smaller-diameter nanotubes decreases with increasing CO\textsubscript{2} concentration.

Figure 1c and d shows the RBM regions of SWNT samples using the excitation energies 1.58 and 2.54 eV, respectively. Similarly, the relative intensity of the RBMs at the higher frequencies (indicated in the dashed frame) decrease with increasing CO\textsubscript{2} concentration. Again, this corresponds to a diminishing fraction of smaller-diameter SWNTs and thus an increase in the mean diameter.

Plotting the optical transition energy \(E_T\) against the RBM frequency, using the Kataura plot,21,22 one can assign the RBM peaks to particular chiralities (or at least to particular \(2n + m\) families). The Kataura plot used in the present study (Figure S3, Supporting Information) is calculated by the extended tight-binding model (ETB), which takes into account rehybridization of \(s\) and \(\pi\) orbitals induced by the curvature of the SWNT sidewall and long-range atomic interactions.23 After the geometrical structure optimization,24 the many-body corrections including both exciton binding energy and the coulomb self-energy are further applied by using logarithmic corrections with empirical parameters.25,26 Here, the model is denoted by ETB/MB. It is worth noting that the mechanism previously used for band to band transitions between van Hove singularities (VHs) is still applicable for the exciton picture from the ETB/MB model.27 Detailed assignments are discussed and listed in Table S1 (Supporting Information). The very small differences between theoretical and experimental values indicate that the Kataura plot based on the ETB/MB model is accurate enough to analyze the SWNT thin-film samples in the present study.

Although Raman spectroscopy is a useful tool to characterize the diameters of SWNTs, it is still challenging to obtain an accurate diameter distribution of SWNTs from the resonant Raman data. However, the UV–vis–NIR absorption spectrum can be distinguished as a technique which can quickly and effectively provide valuable information on the overall diameter distribution of SWNTs. Figure 2a shows the as-measured absorption spectra of the SWNT thin-film samples. We note that the baselines of the spectra have been vertically translated for clarity. The absorption peaks from interband electronic transitions, shown in the enlarged low-energy

![Figure 1](image-url)
Figure 2. (a) The absorption spectra of SWNT samples synthesized at 920 °C with different CO2 concentrations. (b) The absorption spectra of sample C1 along with nonlinear and linear shifts of the backgrounds are shown as dashed and dotted lines, respectively. The arrow depicts the data region where the background was generated. (c) The absorption spectrum of sample C1 after background subtraction (dotted gray line) and the corresponding calculated absorption spectrum (solid gray line). The contributions from the labeled diameter groups of SWNTs are denoted by the colored dashed lines under the absorption peaks areas.

region, strongly overlap in samples C1 and C2. The absorption peaks become more resolved and narrower for the samples collected at higher CO2 concentrations, which corresponds to a narrower diameter distribution in these samples. Moreover, the first absorption peak from E_{11}^{S} was observed to shift to lower energy (implying a larger mean diameter) from C2 to C4 (from top to bottom). For sample C1, the absorption peak from E_{11}^{S} shows a bimodal structure where a peak cannot be identified. The rather flat feature in the absorption spectrum from sample C5 confirms the observation that the SWNT fraction in C5 is low, which has been verified by Raman analysis (Figure 1) and TEM imaging (Figure S1, Supporting Information).

The absorption spectra of the bulk SWNT samples in ref 7, 8, and 11–14 typically showed three pronounced absorption peaks, starting from the lowest energy, corresponding to E_{11}^{S}, E_{22}^{S}, and E_{11}^{M}, respectively. The simple tight-binding model has been often used to predict the energy band gaps of semiconducting and metallic nanotubes, which depend on the diameter $E_{11}^{S} = 2a_{0}\gamma_{0}\lambda d_{i}$, $E_{22}^{S} = 4a_{0}\gamma_{0}\lambda d_{i}$, and $E_{11}^{M} = 6a_{0}\gamma_{0}\lambda d_{i}$, where γ_{0} is interaction energy between neighboring C atoms and a_{0} is the C–C bond distance. However, this model does not consider the curvature and many-body effects which were found to be quite strong in the one-dimensional nanotube system.28 From the analysis of RBB peaks in the Raman spectra, the ETB/MB model (Figure S2, Supporting Information) shows very good agreement with the experimental results. Thus, for the same SWNT thin-film samples, it is reasonable to use this model as a base for the optical absorption analysis.

The total absorption profile can be assumed to be a linear composition of background absorption and contributions from the SWNT material in the thin-film sample according to

$$A(E) = A_{bg}(E) + A_{SWNT}(E)$$

where $A_{bg}(E)$ is background absorption due to graphite, catalyst particles scattering, and π-plasma absorption of carbonaceous material.15,29,30 Although a number of attempts have been made to utilize a linear background model,7,11,31,32 a nonlinear function would better account for physical properties in the SWNT absorption spectrum such as peak overlap and transition broadening.33

We analyze the background absorption in two parts, which can be written as

$$A_{bg}(E) = ke^{\Delta} + \Delta$$

where

$$\Delta = \frac{\omega_{a}(E_{L} - E) + \omega_{b}(E_{L} - E)}{E_{U} - E_{L}}$$

First, the log-linear model15,30 is applied to simulate the nonlinear part ke^{Δ} of the background absorption. Then, a small positive linear shift Δ of the background and parameters in $A_{SWNT}(E)$ is fitted. Parameters k and n are empirical, and the remaining parameters $\omega = \omega_{n}, \omega_{n+1}, ..., \omega_{n,m}, ...$ are estimated based on the absorption in the range from $E_{L} = 0.46$ eV to $E_{U} = 2.50$ eV. The result of the above process is displayed in Figure 2b for sample C1. More detailed discussions about background subtraction are provided in the Supporting Information.

After background subtraction, the absorbance is assumed to be essentially only due to the interband electronic transitions of the SWNT material. We model optical absorption as a linear composition of each nanotube type

$$A_{SWNT}(E) = \sum_{(n,m)} \omega_{(n,m)} A_{(n,m)}(E)$$

Here, $\omega_{(n,m)}$ reflects the absorption probability of the (n,m)-SWNT in the bulk $(n \geq m \geq 0)$. We interpret $C_{(n,m)} = \omega_{(n,m)} / \sum_{(n,m)} \omega_{(n,m)}$ as a proxy for proportion of the (n,m)-SWNT in the sample. $A_{(n,m)}(E)$ is the characteristic absorption spectrum of (n,m) tubes. This is assumed to be a sum of Gaussian line shapes describing the broadening of each optical transition due to the finite lifetime and finite resolution of the spectrometer.

$$A_{(n,m)}(E) = \sum_{i} \exp \left[-\frac{1}{2} \left(\frac{E - E_{i}^{(n,m)}}{\Delta E} \right)^{2} \right]$$

The broadening factor ($\Delta E = 50$ meV), tested from 20 to 80 meV, was found not to be a crucial parameter for the final results. The transition energy $E_{i}^{(n,m)} (i = 1, 2, 3, ...)$ was taken from ETB/MB theory. For large-diameter semiconducting nanotubes ($d > 1.5$ nm), the higher transition energies of E_{22}^{S} and E_{11}^{M} are already less than 2.5 eV (shown in the Kataura plot) and will contribute to the overall absorption spectra. Thus all of the transition energies within the fitting scale ($E_{L} - E_{U}$) were considered in the calculation. For metallic nanotubes, the transition energies split except for the armchair nanotubes due to the trigonal warping effect.34 The higher and lower branches correspond to the E_{11}^{M} and E_{22}^{M} transitions, respectively. The optical transition corresponding to E_{11}^{M} was
recently observed in Raman studies, but the intensity associated with $E_{1\text{1}H}$ was much lower than that to $E_{1\text{1}L}$ transitions. In addition, SWNTs, as known, prefer to grow in the armchair direction. Therefore, we have reasons not to consider the contribution of $E_{1\text{1}H}$ transitions of metallic nanotubes in the optical absorption process. We assume that the broadening factors and absorption cross sections were both independent of the SWNT chiralities or different interband transitions. The nanotubes whose diameters were in the scale of 0.5–2.5 nm were considered in the fitting process.

The direct linear problem of finding the coefficients $\omega = \omega_a, \omega_b, \ldots, \omega_{n,m}, \ldots$ is highly ill-conditioned. A well-conditioned basis $\{A_{n,m}\}$ can, at most, contain on the order of 40 such vectors ($E_l - E_i = 2 \text{ eV}, \Delta E = 50 \text{ meV}$). Hence, the problem is not solvable without an additional assumption, nor can we expect to solve any one weight accurately. Rather, we should aim at a consistent distribution under reasonable and as least restrictive as possible a priori assumptions. Consequently, we propose using a regularization scheme

$$\min_{\omega} \| A(\omega) - A_{\text{measured}} \|^2_2 + c \Phi(\omega)$$

Here, we considered two approaches for $\Phi(\omega)$; the weights of "similar" SWNTs are correlated, $\Phi(\omega) = \omega^T C \omega$, where C is a positive definite correlation matrix, or that the special case using 2-norm, $\Phi(\omega) = \|\omega\|_2$. Note that, although both impose an assumption on the SWNT distribution, they are much less limiting assumptions than imposing a Gaussian distribution on the diameter. We resort here to the latter approach as we found it produce rather satisfactory results with simpler assumptions. Clearly, the regularization parameter $c > 0$ needs to be chosen to produce reasonable results. We found that c values in the range from 1 to 3 typically achieve this.

As shown in Figure 5a, the dotted black lines represent the original absorption spectra after the background subtraction, and the thin solid lines on the top denote the fitted spectra. Very small differences were observed between the fitted spectra and the experimental absorption spectra. The associated diameter distributions of the calculated spectra are drawn in the Figure 3b. For sample C1, the diameter histogram showed a bimodal distribution, with the most abundant diameters of SWNTs centered at 1.3 and 1.7 nm. The detailed deconvolution of absorption peak areas by different diameter groups of SWNTs is represented by the colored dashed curves in Figure 2c. The calculated mean diameter is 1.41 nm. More than 80% of the tubes were determined to be in the diameter distribution of 1.0–2.0 nm. After adding a small amount of
CO₂, the bimodal diameter distribution merged to a single
distribution. Sample C2 shows a mean diameter \(d \) of 1.42
nm, and approximately 78% of the nanotubes are in the range
from 1.0 to 1.8 nm in diameter. By continuously increasing the
CO₂ concentration, the mean diameter of sample C3 is shifted to
1.61 nm, with a much lower fraction of small-diameter nano-
tubes produced. For sample C4, the mean diameter further
increased to 1.68 nm, with 89% of the nanotubes ranging from
1.2 to 2.0 nm in diameter. The results, based on absorption spec-
tra, are in good agreement with the initial Raman studies, that is,
the relative abundance of smaller-diameter decreases with the
increase of CO₂ concentration, which results in a narrower
diameter distribution and an increase in the mean diameter.

The nanotube diameter distributions assessed by the above
spectroscopy measurements have been validated by using
high-resolution TEM, which allows direct observation and
quantitative characterization of the nanotube structures. For
this purpose, about 100 randomly isolated SWNTs from each
sample (C1, C2, and C3) were imaged. The microscope was
carefully calibrated with a standard sample (Au particles) for the
magnification that was used in this work. In order to minimize
the ambiguity of the measurement due to the focusingdevia-
tions resulting from the possible variance in the sample height,
all images were focused by adjusting the heights of the speci-
mens while keeping the current of the objective lens constant.
HRTEM images were taken under such a focusing condition that
the two walls of a nanotube produced two sharpest dark lines.
Under these conditions, the accuracy of the diameter measure-
ments from HRTEM is estimated to be about \(\pm 0.1 \) nm.

Figure 3d shows an example of a diameter measurement from
a HRTEM image taken from sample C1. The diameter
histograms of the SWNT samples measured from HRTEM
images are plotted in Figure 3c. For sample C1, a Gaussian fit
showed a mean diameter of 1.53 nm, with 90% of the SWNTs
in the diameter range of 1.0–2.0 nm. The deduced diameter
histogram shows SWNTs centered at 1.3 and 1.5 nm in
diameter. This is in good agreement with the results obtained
from absorption spectra analysis. Compared with the Raman
results in Figure 1 and Table S1 (Supporting Information),
using different laser lines, all of the RBMs spectra, indeed,
showed that sample C1 had the highest relative population of
smaller-diameter nanotubes (from 1.0 to 1.4 nm), which
again supports the possibility of bimodal diameter distribu-
tion. For samples C2 and C3, the diameter diagrams derived
from the HRTEM measurements yield mean diameters of
1.35 and 1.62 nm, respectively, which is consistent with the
results obtained from absorption spectra, that is, 1.42 and
1.61 nm, respectively. Additionally, there is a good agreement
with the diameter distributions in samples C2 and C3. More
than 77% of the SWNTs in sample C2 have diameters in the
range of 1.0–1.8 nm, and in sample C3, about 90% of the
SWNTs are from 1.2 to 2.0 nm in diameter.

In summary, by a combination of spectroscopic and micro-
scopic techniques, we have successfully determined the mean
diameters and properties of diameter distributions of as-
synthesized SWNT bulk samples. A novel method was de-
veloped for more efficient evaluation of the mean diameter and
diameter distribution of a bulk SWNT sample from optical
absorption spectra. Without making a strict assumption for the
form of the diameter distribution, the optical absorption from
the transition energies of each nanotube was modeled by
summing contributions over the entire absorption spectrum.
The transition energies of a SWNT are described by a sum of
Gaussian line shapes and known peak positions corresponding
to the ETB/MB model, which was verified by Raman spectro-
copy on the same bulk SWNTs. The highly ill-posed problem
was well-resolved by the introduction of a regularization term
in the fitting process. Raman spectroscopy and high-resolution
transmission electron microscopy techniques were employed
to validate the results. Comparisons between different techni-
ques suggested that absorption spectroscopy of bulk SWNTs is
very efficient in assessing diameter distributions regardless of
the appearance of absorption bands and forms of diameter
distributions. In addition, the biomodal diameter distribution
of SWNTs is regarded as a consequence from the continuous
decomposition of ferrocene throughout the reactor at the set
temperature. Meanwhile, the results of diameter distributions
imply that CO₂ as an etching agent plays an important role in
tailoring diameters of SWNTs. The growth mechanisms will be
addressed in detail in a separate publication.

SUPPORTING INFORMATION AVAILABLE Experimental
details of sample characterization, TEM image of sample C5,
detailed assignments of \((n,m)\) chiralities or families (Table S1)
from the RBM region of Raman spectra based on the Kataura plot
(Figure S2), and discussions about background subtraction. This material is
available free of charge via the Internet at http://pubs.acs.org

AUTHOR INFORMATION

Corresponding Author:

*To whom correspondence should be addressed. E-mail: alb.erts
nasibulin@tkk.fi (A.G.N.). esko.kauppinen@tkk.fi (E.I.K.). Fax:
+358 924513517. Tel: +358 405098064.

ACKNOWLEDGMENT We are grateful to Jussi O. Sarkkinen for his
help with experiments. This work was financially supported by the
Academy of Finland (Projects 128495 and 128445), TEKES
(GROCO and NaBuPi projects), and the CNB-E project in the Aalto
University Multidisciplinary Institute of Digitalization and Energy
(MIDE) Programme. T.N. and L.K. acknowledge the Finnish Centre
of Excellence in Computational Molecular Science and the FinNano
Program (OPNA).

REFERENCES

1. Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P. *Carbon Nano-
tubes: Synthesis, Structures, and Applications*, Springer

Iijima, S. Chiral-Angle Distribution for Separated Single-

Electron Microscopy and UV–Vis–IR Spectroscopy Analysis
of the Diameter Sorting of Carbon Nanotubes by Gradient
2219–2223.

Robust Bessel-Function-Based Method for Determination of

